Observations of light elements in massive stars

An *external* review by Andreas Kaufer, ESO

Massive Stars

- Despite that
 - Only 3 stars out of 1000 have a mass > 8 M_{sun}
 - Only 14% of the mass of all stars is found in massive stars (M > 8 M_{sun})
- Massive stars are important because they inject into the ISM in shortest time (3 – 30 Myr) large amounts of
 - Radiation
 - Mass
 - Mechanical energy

Massive Stars

- ... and drive the (chemical) evolution of galaxies and the Universe.
- Therefore massive stars are intensively studied:
 - Surface abundances
 - Mass loss by stellar winds and its link to the surface
 - Rotational velocities
 - Pulsations
 - Surface magnetic fields
 - Massive star populations

Massive Stars

- In the context of this conference:
 - Accurate galaxy evolution models require a detailed understanding of the internal and core properties of massive stars.
 - The consideration of rotation in stellar evolution models predicts significant effects on the evolutionary tracks and surface abundances of massive stars.
 - And are probed by light element(s).

- In hot massive stars observations of light elements reduce to the observation of Boron
- Beryllium and Lithium have no observable transitions
- Boron transitions are all in the satellite UV, i.e., below the atmospheric cut-off at 300nm
- STIS (+COS) @ HST is and will be the only observational resource in the future (after a 5 year forced hiatus)

- B II λ 1362 resonance line
 - Boesgaard & Heacox (1978) using
 Copernicus data to derive abundances of 16
 'normal' A and B stars
 - Venn, Lambert, & Lemke (1996) using IUE
 data of 6 B and A sub/giants and supergiants
 - Cunha et al. (1997) using GHRS on HST to observe 4 B stars in Orion

- B III λ2066 resonance doublet line
 - Proffitt et al. (1999) using high SNR GHRS spectra to determine Boron abundances and ¹¹B/¹⁰B isotope ratios for 3 B stars
 - Proffitt & Quigley (2001) determine Boron abundance for 45 early-type B stars from IUE high-resolution archive spectra
 - Venn et al. (2002) determine 4 Boron upper limits from 7 B-type MS stars using STIS@HST
 - Mendel et al. (2006) observe 7 B-type MS stars using STIS@HST and find most of them Boron depleted

- B II λ1362 line
 - Synthetic spectra for non-rotating star and log ε (B)=2
 - Blended with Sill, Nill, VII, ZnIII, and FeIII
 - BIII dominant ionization stage above 18kK
 - Sensitive to NLTE corrections

Venn et al. (2002)

IAUS 268, Geneva, Nov 9-13, 2009

 $^{11}B/^{10}B \sim 4$ Consistent with meteoric value (Shima 1963) IAUS 268, Geneva, Nov 9-13, 2009

Proffitt et al. (1999)

From observations to abundances

- Detailed abundance analysis using:
 - 1D line-blanketed LTE atmospheres.
 Plane parallel, no expansion, no winds, …
 - 1D (N)LTE Balmer line formation
 - Gravity from Balmer line wings through Stark
 broadening
 - 1D LTE line formation + NLTE corrections
 - or 1D NLTE line formation
 - Temperature from "ionisation equilibrium" (SiII/III/IV or CII/III/IV or ... all)
 - Microturbulence from sensitive lines (e.g. O or Fe)
 - -> Line-by-line element abundances

IAUS 268, Geneva, Nov 9-13, 2009

From observations to Sample of 6 MS and hear MS early B-type stars within 500pc

Elem.						ISM		Sun	
	Cosmic Standard B Stars–This Work ^a		Orion Gas+Dust ^b	B Stars ^c	Young F&G Stars ^c	Gas	Dust ^d	GS98°	AGS05°
Не	10.98 ± 0.02		10.988 ± 0.003					10.99	± 0.02
С	8.32 ± 0.03	209 ± 15	$8.52~\pm~0.02$	8.28 ± 0.17	8.55 ± 0.10	$8.15 \pm 0.06^{\rm f}$	68 ± 26	$8.52~\pm~0.06$	8.39 ± 0.05
Ν	7.76 ± 0.05	58 ± 7	7.73 ± 0.09	7.81 ± 0.21		7.79 ± 0.03^{g}		$7.92~\pm~0.06$	7.78 ± 0.06
0	8.76 ± 0.03	575 ± 41	8.73 ± 0.03	8.54 ± 0.16	8.65 ± 0.15	$8.59 \pm 0.01^{\rm h}$	186 ± 42	$8.83~\pm~0.06$	8.66 ± 0.05
Ne	8.08 ± 0.03	120 ± 9	8.05 ± 0.07					$8.08~\pm~0.06$	7.84 ± 0.06
Mg	$7.56~\pm~0.05$	36 ± 4		7.36 ± 0.13	7.63 ± 0.17	6.17 ± 0.02^{i}	34.8 ± 4.4	$7.58~\pm~0.05$	$7.53~\pm~0.09$
Si	$7.50~\pm~0.02$	32 ± 1		7.27 ± 0.20	7.60 ± 0.14	6.35 ± 0.05^{i}	$29.6~\pm~2.2$	$7.55~\pm~0.05$	7.51 ± 0.04
Fe	$7.44~\pm~0.04$	28 ± 3		$7.45~\pm~0.26$	$7.45~\pm~0.12$	5.41 ± 0.04^{i}	27.3 ± 2.7	$7.50~\pm~0.05$	$7.45~\pm~0.05$

 TABLE 2

 Chemical Composition of Different Object Classes in the Solar Neighborhood and of the Sun

Notes. — (a) In units of $\log(El/H) + 12$ / atoms per 10⁶ nuclei, computed from average star abundances (mean values over all individual lines *per element*, equal weights per line); (b) Esteban et al. (2004); (c) Sofia & Meyer (2001); (d) difference between the cosmic standard and ISM gas-phase abundances, in units of atoms per 10⁶ H nuclei; (e) photospheric values; (f) Sofia (2004); (g) Meyer et al. (1997), corrected accordingly to Jensen et al. (2007); (h) Cartledge et al. (2004); (i) Cartledge et al. (2006).

Przybilla et al. (2008) Asplund (2009) X=0.715 Y=0.271 Z=0.014 Z/X = 0.020 B stars X=0.7154 Y=0.2703 Z=0.0142 Z/X = 0.0198 IAUS protosolar^{Nov 9-13, 2009} 1

Boron abundances

- State of affairs as of today (plot from Cunha's talk yesterday summarizing almost all available measurements).
- Considering the advances in B star abundance analysis it is probably worth to revisit this data.

Boron abundances

- Two B stars in the SMC (V=15mag) with STIS@HST.
- Consistent with galactic slope of 1.5
- Constraints on Boron production via CR spallation.

(2002)

IAUS 268, Geneva, Nov 9-13, 2009

"Dubious" Boron vs Nitrogen

Fig. 11. Dubious relationship of boron with non-LTE nitrogen abundances. Venn, Lembke & Lambert (1996)

Explained by rotational mixing

- Numerous observations indicating mixing in the radiative zones of massive stars
- Mass loss and mass transfer in binaries could also alter surface composition
- However, Boron depletion w/o simultaneous Nitrogen enrichment can only be explained by:
 - Boron is destroyed by proton capture at $<6 \times 10^6 \text{ K}$
 - (1 M_{sun} below the surface of a B-type MS star)
 - Any mixing would deplete B while keeping less fragile elements like Nitrogen unchanged
 - In more evolved stages the same mixing process can enhance other elements like Nitrogen (progressive mixing)
- Mass transfer in a close binary would simultaneously deplete B and enhance N
- Mass loss does not play a strong role for B-type MS stars

--- evolutionary tracks with 12 M_{sun} v_{rot}=200km/s (Heger & Langer 2000) shifted to 3 different initial

B – N abundances Mendel et al. (2006)

IAUS 268, Geneva, Nov 9-13, 2009

Geneva Stellar Evolution Code with rotational mixing
Frischknecht et al. (2010 in prep, cf. poster) implemented extended reaction network including Li, Be, B

 Allows to better model the observed faster B depletion.

- Currently two objects (HD36591, HD30836) show B depletion w/o N enhancement.
- Further observations and analyses are needed to verify that mixing increases with
 - Age
 - Rotation rates
 - Mass
- Further high SNR observations could test prediction of ¹¹B/¹⁰B as function of B depletion (NACRE vs REACLIB95 rates)

Abundances & Stellar rotation rates

- Median equatorial rotational velocity of B-type MS stars is ~ 200 km/s (Howarth 2003)
- · Abundance analyses are biased towards sharpline stars (v sin i < 20 km/s), i.e., stars seen poleon or they are really slow rotators
- We are trying to probe effects of high stellar rotation rates $v / v_{crit} > 0.2$
- Therefore, it is important to
 - include fast rotators in the abundance studies (Proffitt C17)
 - determine true stellar rotation rates
 - Rotation of surface patterns
 - Stellar spots
 - NRP patterns
 - Rotation of wind pattern locked to photosphere IAUS 268, Geneva, Nov 9-13, 2009

True stellar rotation rates from NRP and wind patterns

330

A. Kaufer et al.: Multi-periodic photospheric pulsations and connected wind structures in HD 64760

Fig. 6. Dynamical phase spectra of the Si III λ 4553 line. The observed spectra are phased with $P_1 = 4.810$ h (*left*), $P_2 = 4.672$ h (*center*), $P_3 = 4.967$ h (*right*). 25 phase bins were used for the phase interval 0.0–1.0. All spectra are displayed with ±0.3% cut levels. The measured typical acceleration of the features over the line center of $(dv/d\phi) = -175$ km s⁻¹/cycle is indicated by a dot-dashed lines.

HD64760 (B0.5lb)

Kaufer et al. (2006)

True stellar rotation rates from NRP and wind patterns

330

A. Kaufer et al.: Multi-periodic photospheric pulsations and connected wind structures in HD 64760

Fig. 6. Dynamical phase spectra of the Si III λ 4553 line. The observed spectra are phased with $P_1 = 4.810$ h (*left*), $P_2 = 4.672$ h (*center*), $P_3 = 4.967$ h (*right*). 25 phase bins were used for the phase interval 0.0–1.0. All spectra are displayed with ±0.3% cut levels. The measured typical acceleration of the features over the line center of $(dv/d\phi) = -175$ km s⁻¹/cycle is indicated by a dot-dashed lines.

HD64760 (B0.5lb)

Fullerton et al. (1997)

True stellar rotation rates from NRP and wind patterns

IAUS 268, Geneva, Nov 9-13, 2009

B-N pattern & stellar rotation rates

Morel et al. (2008)

IAUS 268, Geneva, Nov 9-13, 2009

B-N pattern & stellar rotation rates

- Morel et al. (2008) find 3 stars in Group III (B depleted, N enriched) which are *slow* rotators:
 - $-\zeta \text{ Cas } v_{\text{eq}} = 55 \text{ km/s}$ UV SPB + magn.field
 - $-\delta$ Cet v_{eq} = 14 or 28 km/s AS β Cep + magn.field
 - $-\beta$ Cep v_{eq} = 26 km/s UV β Cep + magn.field
- Morel et al. propose that magnetic phenomena are important in altering the photospheric abundances of early B dwarfs, even for surface field strengths at the one hundred Gauss level.